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1 Introduction

Morse theory provides a method to study the topology of a manifold via the properties of
smooth real-valued functions. In particular, the critical points of the function contain the
information to determine the homotopy type, homology, and other important relationships.
Morse theory is a higher dimensional analogue of critical point theory, developed initially
in the 1920s by Marston Morse [1, 2]. The Morse inequalities were soon established,
following work in min-max theory [3]. Morse theory was further developed with the help
of Thom, Smale, Milnor, Witten and many others [4]. For example, the construction of
the Smale-Witten chain complex using the theory of flow lines led to Morse homology [5].
The subject continued to expand with the study of Morse-Bott functions and Bott’s work
in periodicity [6]. There are now countless applications and branches of Morse theory,
such as connections to dynamical systems, algebraic geometry and a number of areas in
topology.

The focus of the first half of the report is the main results from Morse Theory and Morse
homology. This begins with an introduction of Morse functions and their properties in
Chapter 2.

Chapter 3 describes the cellular construction, and therefore its homotopy type as a
CW-complex, of the manifold using the critical points of a Morse function. The resultant
methods allow the homotopy type of a manifold to be immediately known from just one
simple function. This is one of the most fundamental results in Morse theory, and implies
that any smooth compact manifold can be expressed as a CW-complex.

The Morse inequalities are presented in Chapter 4. These describe an upper bound on
the rank of the homology groups in terms of the number of critical points. The Morse
inequalities describe a relationship between homology and the critical points, and indeed,
it is possible to determine the homology groups directly from the properties of the critical
points.

In Chapter 5, the methods for obtaining the Morse homology are discussed, along with
some examples. In many cases, Morse homology can provide a very simple alternative
chain complex, similar to that of cellular homology.

This concludes the study of spaces using Morse functions. Morse functions are special
cases of Morse-Bott functions, which will be the subject of the remainder of the report.
For a Morse-Bott function, the analogous results regarding homotopy type and homology
are more complex. However, in many cases they provide an elegant alternative to the
use of a Morse function.

Morse-Bott functions are introduced in Chapter 6. They are defined similarly to Morse
functions, but without the condition that the critical points are isolated. The function
has a set of critical submanifolds, whose properties give corresponding results to those
of the critical points of a Morse function.
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In Chapter 7, Lens spaces are defined. They provide a collection of manifolds on which
there is a natural Morse-Bott function. The associated critical submanifolds and their
properties will be calculated, and this function will be revisited in later chapters.

There are multiple approaches to calculating the homology from a Morse-Bott function,
which are considered in Chapter 8. In general these methods are more complex, however
a method can be chosen that best suits the situation and there are examples where a
method can lead to a very simple solution. One such approach will be applied to the
Morse-Bott function on the Lens space, where it is possible to determine the homology
using a simple filtration.

Finally, in Chapter 9, the concept of flow categories is described. The flow between critical
points is used in the construction Morse homology. An equivalent concept for Morse-Bott
functions is developed in [7], which has the potential to give additional information about
a manifold.

1.1 Key Definitions

First, there are a number of objects to be defined that will be used throughout the paper.
For example, the main subject of study will be manifolds, maps between spaces, and also
a number of topological concepts that will be used in calculations.

Definition 1.1 (Manifold). A smooth manifold is a space M that is:

• Hausdorff : ∀x, y ∈M,∃ open neighbourhoods Ux 3 x, Uy 3 y, with Ux ∩ Uy = ∅,
• Second countable: M has a countable basis for its topology,

• Locally Euclidean: M has an open cover {Uα} with Uα ⊂ M open ∀α ∈ I and I
is some index set. Then there is a bijection φα : Uα → Vα, where Vα ⊂ Rn open,
satisfying the following. ∀α, β ∈ I with Uα ∩ Uβ 6= ∅,

φβ ◦ φ−1α |φα(Uα∩Uβ) : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

is smooth.

Essentially, a smooth manifold is a space that locally resembles Rn. [8]

Definition 1.2 (Tangent space). The tangent space TpM to a smooth manifold M at
the point p ∈ M is defined as the set of derivations on the set of continuous functions
C∞(M,p) in a neighbourhood of p on M .
A derivation is a linear map δ : C∞(M,p)→ R such that

δ(fġ) = f(p)δ(g) + δ(f)g(p).

The derivations are the tangent vectors to M at p. Then TpM is a vector space. [8]
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Definition 1.3 (Riemannian metric). A Riemannian metric is a collection of inner
products gp : TpM × TpM → R. For vector fields X,Y ∈ TpM , the map p 7→ gp(Xp, Yp)
is smooth.

Definition 1.4. A map f : M → N between two smooth manifolds is smooth if the
maps

φNj ◦ f ◦ (φMi )−1|φMi (Ui∩f−1(Vj∩f(Ui)))

are smooth for all i ∈ I, j ∈ J where {Ui}i∈I is an open cover for M and {Vj}j∈J is an
open cover for N , and φMi : Ui → Ũi ⊂ Rm, φNj : Vj → Ṽj ⊂ Rn the associated maps as
in definition 1.1. [8]

Definition 1.5 (Diffeomorphism). A map f : M → N for M,N smooth manifolds is
called a diffeomorphism if f is smooth, bijective, and both f, f−1 are differentiable.

Then we say that two differentiable manifolds M,N are diffeomorphic if there exists a
diffeomorphism f : M → N . [8]

Definition 1.6 (Homotopic maps). Let X,Y be two topological spaces, and f, g :
X → Y two continuous maps. Then f is homotopic to g, denoted f ' g, if there exists
a continuous family of continuous maps

ht(x) : X → Y

with t ∈ [0, 1] such that the following holds.

h0(x) = f(x),

h1(x) = g(x),

and ht(x) is a continuous function of x, and of t. Then, ht(x) is called a homotopy from
f to g. Homotopy is an equivalence relation. [9, 10]

Definition 1.7 (Homotopy equivalence). Two spaces X,Y are homotopy equivalent
if there are continuous maps f : X → Y and g : Y → X such that

f ◦ g ' idY
g ◦ f ' idX .

[11]

Definition 1.8 (Deformation retract). Let A ⊂ X. Then A is a deformation retract
of X if there is a retraction r : X → A with i ◦ r ' id. The map i is inclusion, and r is
a retraction, with r(a) = a ∀a ∈ A. [9]
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Definition 1.9 (Chain complex). A sequence of abelian groups

...→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 → ...
∂1−→ C0

0−→

with ∂i homomorphisms and ∂i∂i+1 = 0 ∀i, is called a chain complex. [11]

Definition 1.10 (Homology). For a chain complex as above, define the nth homology
group as the quotient group

Hn(C∗) = ker ∂n/im ∂n+1.

[11]

Definition 1.11 (Relative homology). Let A be a subspace of X, and define the
quotient chain complex C∗(X,A) := C∗(X)/C∗(A). The homology groups
Hk(X,A) := Hk(C∗(X, a)) are called the relative homology groups. [11]

Theorem 1.12 (Excision). Let Z ⊂ A ⊂ X, and suppose the closure of Z is contained
in the interior of A. Then for all n, there is an isomorphism

Hn(X \ Z,A \ Z) ∼= Hn(X,A).

[11]

Definition 1.13 (Exact sequence). Let Ai be abelian groups, and fi : Ai → Ai−1
smooth maps. Then the sequence given by

...
k+1−−→ Ak

fk−→ Ak−1
fk−1−−−→ ...

is called a long exact sequence if

ker fi = im fi+1 ∀i.

An exact sequence of the form

0→ A
f−→ B

g−→ C → 0

is called a short exact sequence. In this case, we have that C = B/Im(f). [12]

Definition 1.14 (Exact sequence of the pair). For the pair A,X with A ⊂ X, we
have the following short exact sequence.

0→ C∗(A)
i−→ C∗(X)

j−→ C∗(X,A)→ 0.
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This induces the long exact sequence on homology, called the long exact sequence of the
pair :

...→ Hk(A)
i∗−→ Hk(X)

j∗−→ Hk(X,A)
∂−→ Hk−1(A)→ ...→ H0(X,A).

[12, 11]

Definition 1.15 (Fundamental class). Let M be a manifold and R a commutative
ring. For the map Hn(M ;R)→ Hn(M,M − x;R), a fundamental class [M ] for M is an
element of Hn(M ;R), with its image in Hn(M,M − x;R) a generator for all x ∈ M . A
fundamental class exists if M is R-orientable. [11]

Definition 1.16 (Degree of a map). LetM,N be two manifolds of the same dimension,
n, and [M ], [N ] their respective fundamental classes. Then, if f : M → N is a map, and
fk the induced map on the kth homology, then the degree d of f is the unique integer
such that

fn([M ]) = d[N ] ∈ Hn(N).

[13]

Definition 1.17 (Covering space). A space X has a covering space X̃ if there is a
covering map p : X̃ → X such that every x ∈ X has an open neighbourhood Ux with
p−1(Ux) a disjoint union of open sets in X̃ that get mapped homeomorphically by p onto
Ux.

Then Ux is evenly covered, and the number of sheets of the cover is equal to the number
of disjoint open sets in X̃. [11]

8



2 Morse Functions

Definition 2.1 (Critical Point). For a smooth function f : M → R, p ∈M is a critical
point if f∗ : TpM → Tf(p)R = 0. Equivalently, if (x1, x2, ..., xn) are local coordinates in
a neighbourhood of p, and

∂f

∂x1
(p) =

∂f

∂x2
(p) = .... =

∂f

∂xn
(p) = 0,

then p is a critical point. Denote by Cr(f) the set of critical points of the function f . [6]

Definition 2.2. Let f : M → R be a smooth function on a manifold M , and let p be a
critical point of f . Then

• p is non-degenerate if its Hessian Hf,p(x) is non-degenerate,

• p is isolated if ∃ε > 0 such that q is not a critical point ∀q ∈ Bε(p),
• The index λp of the critical point p of a smooth function f : M → R is defined as

the maximal dimension of the tangent space TpM on which the Hessian Hp(f) is
negative definite. This can also be described as the number of negative eigenvalues
of Hf,p(x). [6]

Definition 2.3 (Morse Function). A smooth function f : M → R is called a Morse
function if its critical points are all non-degenerate. [6]

The non-degeneracy of the critical points implies that the critical points of a Morse
function are isolated.

Definition 2.4 (Self-indexing). A function f : M → R is called self-indexing if for all
p ∈ Cr(f),

f(p) = λp.

[3]

Lemma 2.5. Let M be a compact manifold. Then there exists a self-indexing Morse
function f : M → R. [3]

2.1 The Morse Lemma

One of the most fundamental theorems in Morse theory is the Morse Lemma. It describes
how a Morse function can be expressed in local coordinates, in a simple quadratic form.
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Theorem 2.6 (Morse Lemma). Let p be a non-degenerate critical point of index λ
for a smooth function f : M → R. Then there exist local coordinates (x1, ..., xn) in a
neighbourhood U of p with

xi(p) = 0 ∀i, and f = f(p)− (x1)2 − ...− (xλ)2 + (xλ+1)2 + ...+ (xn)2.

[6], [3]

Proof. We will prove the Morse Lemma as in [3], where L. Nicolaescu begins by first
proving the following theorem.

Theorem 2.7. Let f : M → R be a smooth function on M , where dim(M) = m, and
let p be a non-degenerate critical point of f . Then there exist coordinates (x1, x2, ..., xm)
on a neighbourhood U of p with

xi(p) = 0 ∀i, and f = f(p) +
1

2
Hf,p(x)

where Hf,p(x) =
∑

i,j hijx
ixj with hij = ∂2

∂xi∂xj
(p) is the Hessian of f .

Proof. Wemay assume that f(p) = 0. Then there exist coordinates (xi) on a neighbourhood
N of p s.t. xi(p) = 0 ∀i, these are are fixed by a choice of diffeomorphism Φ : Rm → N
with Φ(0) = p.

Then we set ψ(x) = f(Φ(x)) and define ψt : Rm → R by

ψt(x) = (1− t)ψ(x) + tQ(x)

where Q is the quadratic form

Q =
1

2

∑
i,j

∂2ψ

∂xi∂xj
(0)xixj .

The vector field
Vt(x) =

d

dt
φt(x),

determines an open neighbourhood U ⊂ Φ−1(N) of 0 and unique one-parameter family
of embeddings φt of U into Rm such that for all t ∈ [0, 1],

φt(0) = 0, and φt ◦ ψt = Φ(x) on U. (1)

Now, if we differentiate the above composition with respect to t, we have

∂φt
∂t
◦ ψt + (Vtφt) ◦ ψt = 0

⇐⇒ Q− ψ = Vtφt on φt(U), ∀t ∈ [0, 1] (2)
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using the definition of φt(x) in terms of Q(x) and φ(x) from earlier.

If a vector field Vt can be found that satisfies Vt(0) = 0 ∀t ∈ [0, 1], and (2) on some
neighbourhood W of 0, then

N =
⋂

t∈[0,1]

φ−1t (W )

is a neighbourhood of 0. In this case, ψt satisfies (1) on N .

We will now prove the existence of such a Vt.

Definition 2.8 (Terminology and notation).

• Let f, g be functions in a neighbourhood of 0. Then f is equivalent to g if there
exists a neighbourhood U of 0 with f |U = g|U .
• The equivalence class [f ] is called the germ of f at 0.

• We denote by E the collection of all germs of smooth functions at 0. E is a ring.

• The kernel of the surjective map E → R is a maximal ideal and is denoted by m.
Note this map is induced by the evaluation at 0 map of f .

Lemma 2.9.

• m is generated by the germs of the coordinate functions xi.

• If for |α| < k, (Dαf)(0) = 0, then the germ [f ] ∈ mk. This implies that [ψ] ∈ m2

and ψ −Q ∈ m3.

• Let Jψ be the Jacobian ideal in E, generated by the germs at 0 of ∂xiψ. Then Jψ = m.

Now let δ := ψ −Q, and therefore ψt = ψ − tδ and we may rewrite (2) as

Vt · (ψ − tδ) = −δ.

Consider for each g ∈ E and ∀t ∈ [0, 1] the initial value problem given by

Vt(0) = 0 (3)
Vt · (ψ − tδ) = g. (4)

Lemma 2.10. There exists a vector field Vt that satisfies (4) ∀t ∈ [0, 1], g ∈ m. If g ∈ m2,
then some Vt satisfies (3) as well.
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Proof. The space of solutions to (4) is linear, and we can write any element g ∈ m in
terms of the coordinates xi. Therefore it is enough to consider solutions V i

t of

Vt · (ψ − tδ) = xi.

By Lemma 2.9, there exist aij ∈ E such that xi =
∑

j aij∂xjψ. In matrix form, we have

x = A(x)∇ψ ⇐⇒ x = A(x)∇(ψ − tδ) + tA(x)∇δ. (5)

Then by Lemma 2.9, we have that δ ∈ m3 =⇒ ∂xiδ ∈ m2 ∀i. We may then write ∂xiδ
in terms of the coordinates xi;

∂xiδ =
∑
j

bijx
j

for some bij ∈ m. Therefore, we have in matrix form

∇δ = Bx, B(0) = 0.

Combining this with (5), we have

(I− tA(x)B(x))x = A(x)∇(ψ − tδ).

Then (I − tA(x)B(x)) is invertible for small enough x since B(0) = 0, and we denote
this by

Ct(x) := (I− tA(x)B(x))−1.

Now x = Ct(x)A(x)∇(ψ − tδ), and therefore

xi =
∑
j

V i
j (t, x)∂xj (ψ − tδ)

where we have written V i
j (t, x) for the (i, j)th entry of the matrix Ct(x)A(x).

Thus, we have that V i
t =

∑
j V

i
j (t, x)∂xj is a solution of

Vt · (ψ − tδ) = xi.

If g =
∑

i gix
i ∈ m, then

∑
i giV

i
t is a solution of (4), and furthermore if g ∈ m2, we can

choose gi ∈ m so that we also have a solution of (3).

Finally, since δ ∈ m3 ⊂ m2, there exists a solution Vt of (2), which proves Theorem
2.7.

The Morse Lemma follows as a result of the following fact from linear algebra. [3]
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Lemma 2.11. Let V be a real vector space, and b : V×V → R a symmetric, nondegenerate
bilinear map. Then there is a basis (e1, ...en) of V such that for some v =

∑n
i=1 v

iei ∈ V ,

b(v, v) = −
λ∑
i=1

|vi|2 +

n∑
i=λ+1

|vi|2.

Therefore, we may find suitable coordinates so that the Hessian takes the form as above.

Example 2.12 (The torus). A simple example, as discussed in [6] is the torus T2. The
height function on T2 is a Morse function with four critical points, the global maximum
and minimum and the two saddle points as shown in Figure 1. Let the critical points be
labelled p0, p1, p2, p3 with increasing critical value.

p3

p2

p1

p0

Figure 1: Critical points of the height function on a torus.

In order to calculate the indices,we will need to calculate the Hessian matrices in local
coordinates.

We may write, at each critical point, the function f in the form f = ±x2 ± y2.
In particular, at the global maximum and minimum, the torus locally looks like a
paraboloid. Similarly, we know the parameterisation of a saddle. Thus we have
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f(x, y) =


x2 + y2 at p0

x2 − y2 at p1, p2

−x2 − y2 at p3.

Therefore we get the hessian matrices

Hp0(f) =

[
2 0
0 2

]
, Hp1(f) =

[
2 0
0 −2

]
, Hp2(f) =

[
2 0
0 −2

]
, Hp3(f) =

[
−2 0
0 −2

]
.

Thus, the indices of the critical points are 0, 1, 1 and 2 respectively. Note that these local
representations are of the form described by the Morse Lemma, and so we could also
read off the indices from the local parameterisation f(x, y).
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3 Homotopy Type

One of the most fundamental results coming directly from a Morse function f on a
manifold M is the relationship between the homotopy type of M and the critical points
of f . By slicing M along the level sets of f , properties of the Morse function can tell us
how the associated sublevel sets change as we pass critical points. The following main
results are described in detail by Milnor [6], whose notation we will also use.

For the rest of the chapter, we will let f : M → R be a Morse function on a manifold M .

Theorem 3.1. If for a < b ∈ R, f−1[a, b] = {q ∈ M | a ≤ f(q) ≤ b} is compact and
contains no critical points of f , then the sublevel set Ma := f−1(−∞, a] is diffeomorphic
to M b := f−1(−∞, b]. In fact Ma is a deformation retract of M b, and the inclusion map
from Ma into M b is a homotopy equivalence.

This says that the homotopy type of the sublevel set f−1(−∞, y], y ∈ R, does not change
as y is continuously varied without passing any critical values.

Proof. This theorem can be proved by pushingM b back toMa along trajectories orthogonal
to the level sets of f .

We first need a Riemannian metric on M , so that we can define these trajectories in
terms of a gradient vector field. Denote by

X(f) = 〈X, grad f〉

the vector field grad f . Then we can see that this vector field only has zeros at the
critical points of f .

For a curve c : R→M , we have〈
dc

dt
, grad f

〉
=
d(f ◦ c)
dt

.

Define the vector field

Xq =

{
(grad f)q

〈grad f,grad f〉 if q ∈ f−1[a, b]
0 if q ∈M \N([a, b])

for N([a, b]) a compact neighbourhood of [a, b]. Then by a result in Riemannian geometry
[8], a smooth vector field of this form generates a unique 1-parameter group of diffeomorphisms
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of M . That is, a map φ : R × M → M such that ∀t ∈ R, φt(q) := φ(t, q) is a
diffeomorphism of M onto M satisfying

φs+t = φs ◦ φt ∀s, t ∈ R.

We have that
Xq(f) = lim

h→0

f(φh(q))− f(q)

h
.

Then, whenever φt(q) ∈ f−1([a, b]),

df(φt(q))

dt
=

〈
dφt(q)

dt
, grad f

〉
= 〈X, grad f〉 =

〈
grad f

〈grad f, grad f〉 , grad f
〉

= 1.

So, t→ f(φt(q)) is linear with derivative 1 whenever φt(q) ∈ f−1([a, b]).
Then φb−a : M → M is a diffeomorphism that takes Ma to M b, hence Ma and M b are
diffeomorphic. A retraction map from Ma to M b follows from the 1-parameter family of
maps rt : M b →M b given by

rt(q) =

{
q if f(q) ≤ a
φt(a−f(q))(q) if a ≤ f(q) ≤ b.

We can see that r0 is the identity, since either r0(q) = φ0(q) or r0(q) = q. We know that
φ0(q) = q ∀q, as a result of the property φt+0 = φt ◦ φ0 = φt ∀t ∈ R.

Also, to show that r1 is a retraction fromM b toMa, we need that r1(q) ∈Ma ∀q ∈M b.
It is clear that r1 is identity on Ma since if q ∈ Ma, r1(q) = q ∈ Ma. Due to the
linearity of t→ f(φt(q)) and the fact it has gradient 1 for all φt(q) ∈ f−1[a, b], we know
that f(φa−f(q)(q)) varies linearly with a− f(q), and in particular,

a− b ≤ f(φa−f(q)(q)) ≤ a =⇒ r1(q) ⊂ f−1[a− b, a] ⊂Ma.

Therefore, Ma is a deformation retract of M b.

Theorem 3.2. Suppose p is a critical point of f with index λ, and f(p) = c. If
f−1[c − ε, c + ε] for some ε > 0 is compact and contains no critical point other than p,
then for ε small enough, M c+ε has the homotopy type of M c−ε with a λ-cell attached.

Proof. Using the method in [6, 3]. We begin by using the properties of a Morse function in
order to find a new function F that satisfies a number of useful properties. In particular,
the new function we will define will coincide with the Morse function f : M → R except
in a small neighbourhood of each critical point pi, where it will take smaller values than
the original Morse function.

16



Then we will have that the sublevel sets F−1(−∞, c− ε] are an extension of the regions
M c−ε = f−1(∞, c − ε], with an attached small region containing the critical point pλ
of index λ. Then it can be shown that f−1(∞, c − ε] ∪ eλ is a deformation retract of
F−1(−∞, c− ε], which is itself a deformation retract of f−1(∞, c+ ε].

Let p be a critical point of f . Then there exists local coordinates (x1, x2, ..., xn) in a
neighbourhood U of p such that for some ε > 0 we can write f in U as

f = c−
λ∑
i=1

(xi)2 +

n∑
i=λ+1

(xi)2,

and f satisfies the following properties:

• xi(p) = 0 ∀i ∈ {1, ..., n} since p a critical point,

• f−1([c− ε, c+ ε]) is compact, containing p as its only critical point,

• The image of U under the diffeomorphism (x1, ..., xn) : U → Rn contains the closed
ball Dn(0, 2ε) := {(x1, ..., xn)|∑n

i=1(x
i)2 ≤ 2ε}.

Then we will construct our new function F by first defining a function µ(s) : R → R
such that the following is satisfied.

• µ(0) > ε,

• µ(s) = 0 for r ≥ 2ε,

• −1 < dµ(s)
ds ≤ 0 ∀s.

Also, to simplify expressions, define x−, x+ ⊂ U and the maps ν−, ν+ : U → R≥0 by

x− := (x1, ..., xλ, 0, ..., 0), ν− :=

λ∑
i=1

(xi)2,

x+ := (0, ..., 0, xλ+1, ..., xn), ν+ :=
n∑

i=λ+1

(xi)2

so that f = c− ν− + ν+. Then, we can define

F =

{
f − µ (ν− + 2ν+) := c− ν− + ν+ − µ(ν− + 2ν+) in U

f := c− ν− + ν+ in M \ U

Lemma 3.3. F is a Morse function on M with the same critical points as f .

Proof. F is a smooth function, and we have

dF =
∂F

∂ν−
dν− +

∂F

∂ν+
ν+

17



and

{
∂F
∂ν−

= −1− µ′
∂F
∂ν+

= 1− 2µ′
=⇒ dF = −(1 + µ′)dν− + (1− 2µ′)dν+.

In particular, we have ∂F
∂ν−

< 0 and ∂F
∂ν+
≥ 1, since −1 < µ′(s) ≤ 0 ∀r.

Thus, if dF = 0 at a point q, we must have dν−(q) = dν+(q) = 0. This can only happen
at the origin. Therefore, the only critical point of F in U is the origin.

Lemma 3.4. F−1(−∞, c+ ε] = f−1(−∞, c+ ε] = M c+ε

Proof. F = f in M \ U . In fact, F = f outside the region where ν− + 2ν+ ≤ 2ε, since
µ(s) = 0 for s ≥ 2ε. Inside the region, we have

F = c− ν− + ν+ − µ(ν− + 2ν+) ≤ c− ν− + ν+ = f ≤ c+
1

2
ν− + ν+ ≤ c+ ε.

The first inequality comes from the fact that ν−, ν+ ≥ 0 and −1 < µ′(s) ≤ 0, so for
0 ≤ ν− + 2ν+ ≤ 2ε, we have

ε < µ(ν− + 2ν+) ≤ 0.

Thus,
F−1(−∞, c+ ε] ∩ {ν− + 2ν+ ≤ 2ε} = M c+ε ∩ {ν− + 2ν+ ≤ 2ε}

and elsewhere, f and F coincide.

Lemma 3.5. F−1(−∞, c− ε] is a deformation retract of M c+ε.

Proof. Note that F−1[c− ε, c+ ε] ⊂ f−1[c− ε, c+ ε]. This is because Lemma 3 and the
fact F ≤ f imply that if F (q) ≥ c− ε, then f(q) ≥ F (q) ≥ c− ε.
Therefore, as a closed subset of a compact set, F−1[c − ε, c + ε] is compact. The only
critical point it could contain would be a critical point in f−1[c− ε, c+ ε] which must be
p.
However,

F (p) = c− µ(0) < c− ε /∈ F−1[c− ε, c+ ε],

which implies that F−1[c− ε, c+ ε] contains no critical points.

By Theorem 3.1 and Lemma 3, F−1(−∞, c− ε] is a deformation retract of
F−1(−∞, c+ ε] = M c+ε.

Let the degree λ cell eλ, where λ is the index of the critical point p, be defined by

eλ = {q ∈M |ν−(q) ≤ ε, ν+(q) = 0}.

18



Then eλ is contained in the small region F−1(−∞, c − ε] \M c−ε := H. It is also true
that ∀q ∈ eλ,

F (q) ≤ F (p) < c− ε, and f(q) ≥ c− ε.
This is because

F (q) = c− ν−(q)− µ(ν−(q)) ≤ F (p) = c− µ(0) < c− ε.

We have F (q) ≤ F (p) since ∂F
∂ν−

< 0 and 0 = ν−(p) ≤ ν−(q).

The final thing to prove is that M c−ε ∪ eλ is a deformation retract of M c−ε ∪H.

This can be proved by constructing a deformation retraction

rt(q) : M c−ε ∪H →M c−ε ∪H

such that it is identity outside U . To define rt in U , we split the region U in to three
regions: U1 := {ν− < ε}, U2 := {ε ≤ ν− ≤ ν+ + ε} and U3 := {ν+ + ε ≤ ν−}.
• In U1, take

rt : (x1, ..., xn) 7→ (x1, ..., xλ, txλ+1, ..., txn) := x− + tx+

=⇒ r1 is the identity map, and

r0 : U1 → eλ, with r0(x
1, ..., xn) = x−.

Since for x− we have ν+ = 0, it is clear that x− ∈ eλ.
Finally, rt(q) maps the region M c−ε ∪ H = F−1(∞, c − ε] to itself since we have
∂F
∂ν+

> 0. We have that ν+ increases with t, and hence F increases with t. Hence
for t ≤ 1, we have for q ∈ F−1(∞, c− ε] that

F (rt(q)) ≤ F (r1(q)) = F (q) ≤ c− ε.

• In U2, let
rt : (x1, ..., xn) 7→ (x1, ..., xλ, ζtx

λ+1, ...., ζtx
n),

where ζt ∈ [0, 1] such that

ζt := t+ (1− t)
(
ν− − ε
ν+

)1/2

.

Then, r1 is identity on U2, and r0 : U2 → f−1(c− ε). This is because

r0(x
1, ..., xn) =

(
x1, ..., xλ,

(
ν− − ε
ν+

)1/2

xλ+1, ...,

(
ν− − ε
ν+

)1/2

xn

)
=⇒ f(r0(x

1, ..., xn)) = c− ν− +
ν− − ε
ν+

ν+ = c− ε.
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• In U3, we may take rt(q) = q.

Then, we have

ν+ + ε ≤ ν− ⇐⇒ ν− − ν+ ≥ ε ⇐⇒ f := c− (ν− − ν+) ≤ c− ε.

That is, the region coincides withM c−ε, so rt = id is a deformation retraction from
M c−ε ∪H to M c−ε ∪ eλ when restricted to U3.

Finally, rt defined on U2 corresponds to rt defined on U1 when ν− = ε. Also, rt as defined
on U3 is the same as rt on U2 when ν− = ν+ + ε.
Hence, rt : M c−ε ∪ H → M c−ε ∪ H is a deformation retraction, and M c−ε ∪ eλ is a
deformation retract of M c−ε ∪H.

Thus, we have shown that F−1(−∞, c − ε] is a deformation retract of M c+ε, and in
Lemma 3.5 that M c−ε ∪ eλ is a deformation retract of M c−ε ∪ H = F−1(−∞, c − ε].
Therefore, we have that M c−ε ∪ eλ is a deformation retract of M c+ε, and in particular
they have the same homotopy type. This proves Theorem 3.2.

The following, final theorem regarding the homotopy type ofM is of particular relevance
since it gives us a cellular structure for the manifold M .

Theorem 3.6. Suppose Ma is compact ∀a ∈ R. Then M has the homotopy type of a
CW-complex with a λ-cell for each critical point of index λ.

The proof of this theorem follows from what we have proved above, along with the
following lemmas. [6]

Lemma 3.7. Let X be a topological space. Suppose that f : Sλ−1 → X, g : Sλ−1 → X
are homotopic maps. Then the identity map on X extends to the homotopy equivalence

h : X ∪
f
eλ → X ∪

g
eλ.

The space
X ∪

f
eλ := (X q eλ)/ ∼

is given by the disjoint union of the λ-cell eλ and X, with the gluing relationship characterised
by the equivalence relation given by p ∼ f(p), for p ∈ Sλ−1.

Lemma 3.8. Let f : Sλ−1 → X be an attaching map. Then for two homotopy equivalent
topological spaces X and Y , the homotopy equivalence h : X → Y extends to the homotopy
equivalence

H : X ∪
f
eλ → Y ∪

hf
eλ.
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Proof of Theorem 3.6. SinceMa is compact ∀a ∈ R, we have for c1 < c2 < ..., the critical
values of the Morse function f , that the sequence (ci) has no cluster points. Suppose
that a is not a critical point, and thatMa is homotopy equivalent to some CW -complex.
Then ci−1 < a < ci for some i ∈ N. Denote c := ci. We will also assume that there is a
homotopy equivalence h′ : Ma → X for some CW -complex X.
By combining the previous results, we see that there exists an ε > 0 such that the
homotopy type of M c+ε is the same as that of

M c−ε ∪
f1
eλ1 ∪

f2
eλ2 ∪ ... ∪

fm
eλm

for some m.
Here, the λk are the indices of the m critical points in f−1(c), and the fk are attaching
maps.

There is a homotopy equivalence h : M c−ε → Ma, since there are no critical points in
the region f−1[a, c− ε].
Then we have that h′ ◦ h ◦ fk is homotopic to a map ψk,∀k such that

ψk : Sλk−1 → (λk − 1)−skeleton of X.
X ∪
ψ1

eλ1∪ ... ∪
ψm
eλm is a CW -complex. By Lemmas 3.7 and 3.8, it has the same homotopy

type as M c+ε since we know that X is homotopy equivalent to Ma which is homotopy
equivalent to M c−ε, and since we have homotopic maps.

By the same method, we see that this holds for all a, that is, Ma has the homotopy type
of a CW -complex ∀a ∈ R.

If M is not compact, but has finitely many critical points, then they all lie in a compact
set Ma for some a. It can be shown similarly to above that Ma is a deformation retract
of M , since there are no critical points in f−1[a,∞).

If there are infinitely many critical points of the function f : M → R, then the sequence
(ci) is infinite, and it can be shown thatM is again homotopy equivalent to a CW -complex
by considering the limit of the homotopy equivalences hi : Mai → Xi, i ∈ N.

In any case, we have constructed a homotopy equivalence from M to a CW -complex
with a cell of dimension λ for each critical point of index λ.

3.1 Examples

To demonstrate the above results regarding homotopy type, let us see what it tells us
about a couple of simple examples, namely, the torus T2, and the complex projective
space CPn.
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Example 3.9 (Homotopy type of T2). We already determined that the height function
on T2 is Morse, and has 4 critical critical points of indices 0, 1, 1 and 2.

Therefore, by the theorems above, this tells us that the torus is homotopy equivalent to
a CW -complex comprised of one 0-cell, two 1-cells and a 2-cell. That is,

T2 ' e0 ∪ e1 ∪ e1 ∪ e2.

This can easily be seen by the following construction.

We begin with the empty set. As we pass the first critical point of index 0, we add a
0-cell, that is a point. This is homotopy equivalent to a disk.

Then as we pass the second critical point, with index 1, we add a 1-cell or handle as
shown below.

The third critical point also has index 1, and another handle is added.

Then the final critical point has index 2, and attaching a 2-cell to the above diagram
gives us the torus.

Example 3.10 (Homotopy type of CPn). Consider the space

CPn := Cn+1/C×
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where we have the equivalence relation

(z0, ..., zn) ∼ (λz0, λz1, ..., λzn) = λ(z0, ..., zn)

for any λ ∈ C×. As is explained in [6], we have that

f(z0, ..., zn) =

n∑
i=0

ci|zi|2

where ci ∈ R are constants, is a Morse function on CPn. In the local coordinates
(z0, ...zn), f can be written in terms of z0 for some only by the implicit function theorem
as long as z0 6= 0.

Write
|z0|

zj
z − 0

= xj + iyj =⇒ |z0|2 = 1− (x2j + y2j ) ∀j 6= 0,

and f can be rewritten as

f = c0 +
∑
j=1

(cj − c0)(x2j + y2j )

Define (cj − c0) =: rj . Hence we have

df = 2[r1x1, ..., rnxn, r1y1, ..., rnyn]

So for a critical point, we have zj = 0 ∀j 6= k. Since λz ∼ z, we have one critical
point: ck = (0, ..., 1, ..., 0) ∈ CPn where the 1 in is the zthk coordinate. This is true for all
k ∈ {0, ..., n} and so in total there are n+ 1 critical points pi of this form.

The index can be found from the Hessian matrix

Hp0(f) =

[
M 0

0 M

]
, where M =


2r1 0 0 ... 0
0 2r2 0 ... 0
: : : : :
0 0 0 ... 2rn

 .
Since the above method of eliminating z0 can be repeated for each other coordinate zj ,
we may assume without loss of generality that we have an ordering c0 ≤ c1 ≤ ... ≤ cn.
Then the dimension of Hp0(f) that is negative definite is 0. Similarly, the dimension of
Hpn(f) that is negative definite is 2n.

For each Hpk(f), by definition of the coefficients rj := cj−ck, we see that the dimensions
of the negative-definite subspaces of the Hessians Hpk(f) will run through all elements of
the set {0, 2, 4, .., 2n}. These integers are by definition the indices of the critical points
pk.

Therefore, we have the result that

CPn ∼ e0 ∪ e2 ∪ e4 ∪ ... ∪ e2n.
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4 The Morse Inequalities

The Morse inequalities are a fundamental result in Morse theory. They describe a
relationship between the Betti numbers of a manifold M , and the critical points of the
Morse function f on M . To understand this relationship, let us first define the Betti
numbers of a space.

Definition 4.1 (Betti numbers). Let M be a smooth compact manifold. Then there
are integers bk(M) called Betti numbers defined by

bk(M) := rk(Hk(M))

where Hk(M) is the kth singular homology group of M . [11]

Informally, the Betti numbers relate to the number of "holes" in M . For example,
b0(M) gives the number of connected components of M , and b1(M) gives the number of
1-dimensional holes in M .

Before we state the Morse inequalities, there are some necessary definitions that will help
us to reduce the statement to a simpler one in the proof.

Definition 4.2 (Morse polynomial). For a Morse function f : M → R on an n-dimensional
manifold M , define the Morse polynomial

Mt(f) :=
n∑
k=0

ckt
k.

[5]

Definition 4.3 (Poincaré polynomial). The Poincaré polynomial of a manifold M of
dimension n is defined as

Pt(M) =

n∑
k=0

bk(M)tk.

[5]

Theorem 4.4 (Weak Morse Inequalities). Let M be a compact manifold and f a
Morse function on M . Let ck denote the number of critical points of f with index k, and
let bk(M) denote the kth Betti number of M . Then

bk(M) ≤ ck.

[6, 5]
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Proof. The weak Morse inequalities follow from the definitions of ck and bk, our knowledge
of the homotopy type of M , and the use of cellular homology. Proved as in [5].

We know that ∀k ∈ 1, ..., n,

HCW
k (Mk,Mk−1) ∼= Zck ,

since ck is the number of cells of dimension k. We also have

bk = dim(Hk(M)) = dim(HCW
k (M))

since it is true that the cellular homology is homeomorphic agrees with the singular
homology of M .

HCW
k (M) := ker(dk)/im(dk+1) where the map dr is defined by the composition

Hm(M r,M r−1)→ Hr−1(M
r−1)→ Hr−1(M

r−1,M r−2)

⇐⇒ Zcr → Hr−1(M
r−1)→ Zcr−1

Thus, we have

bk := dim ker(dk)/im(dk+1) ≤ dim ker(dk) ≤ dim(Zck) = ck ⇐⇒ bk ≤ ck ∀k.

Theorem 4.5 (Polynomial Weak Morse Inequalities). In terms of the Morse polynomial
and Poincaré polynomial we have

n∑
k=0

bk(M) ≤
n∑
k=0

ck

⇐⇒ P1(M) ≤M1(f).

[6]

Theorem 4.6 (Morse Inequalities). [6] [5]
n∑
k=0

(−1)kbk(M) =

n∑
k=0

(−1)kck (6)

s∑
k=0

(−1)k+sbk(M) ≤
s∑

k=0

(−1)k+sck ∀s ∈ {0, ..., n} (7)

We will follow the proof in [5], using an equivalent relation of polynomials.

Proof of the Morse inequalities. To prove the Morse inequalities, we reduce the statement
to the following statement regarding the Morse and Poincaré polynomials.
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Theorem 4.7 (Polynomial Morse Inequalities).

Mt(f) = Pt(M) + (1 + t)R(t) (8)

where R(t) is a polynomial with coefficients ri ≥ 0 ∀i ∈ {0, ..., n− 1}.

Proof of equivalence. We can show that the two statements are equivalent by using the
definitions of the polynomials Mt(f) and Pt(M). (6) gives us

P−1(M) =

n∑
k=0

(−1)kbk(M) =

n∑
k=0

(−1)kck = M−1(f)

⇒(1− t) | (Mt(f)− Pt(M))

⇒Mt(f) = Pt(M) + (1 + t)R(t).

The coefficients ri of R(t) are integers since the coefficients of Mt(f) and Pt(M) are
integers. The weak Morse inequalities will require that the coefficients are non-negative.
By considering the equation (8) for different values of t we get the following.

t = 0 : c0 = b0 + r0. (9)

Now, if we expand (8) and consider just the linear terms at t = 1 we get

c0 + c1t = b0 + b1t+ r0 + r0t+ r1t

at t = 1 : ⇐⇒ c1 + c0 = b1 + r1 + 2r0 + b0.

Using the relationship (9) to remove r0 gives us

c1 − c0 = b1 + r1 − b0.
We will now use induction to find the result for general m ∈ {0, ..., n − 1}. We assume
the result for all m ≤ k as follows

rm =
m−i∑
i=0

(−1)ici −
m−i∑
i=0

(−1)ibi.

Then, as before, we consider the terms of orders k and k + 1 in (8) and set t = 1.

ck + ck+1 = bk + bk+1 + rk−1 + 2rk + rk+1.

Now, we substitute in the expressions for rk−1 and rk from the inductive hypothesis and
cancel terms.

ck + ck+1 = bk + bk+1 +
k−1∑
i=0

(−1)(k−1)−i(ci − bi) + 2
k∑
i=0

(−1)k−i(ci − bi) + rk+1

⇐⇒ ck + ck+1 = bk + bk+1 + 2(ck − bk)−
k−1∑
i=1

(−1)k−i(ci − bi) + rk+1

⇐⇒
k+1∑
i=0

(−1)(k+1)−ici −
k+1∑
i=0

(−1)(k+1)−ibi = rk+1.
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Hence, we have proved the statement ∀m ∈ {0, ..., n− 1}. From this, it is clear that the
ri are non-negative ∀i ∈ {0, ..., n− 1} by the weak morse inequalities bk(M) ≤ ck.

Thus, it is left to prove the equivalent polynomial inequalities.

Proof of the polynomial Morse inequalities. Let Ck(M ;F) be the finitely generated chain
complex generated by index k critical points of f , with Ck = 0 ∀k > n, and let ∂k be
the associated boundary map. Then the following sequence is a short exact sequence by
definition.

0→ ker ∂k → Ck(M ;F)
∂k−→ im ∂k → 0

Define

vk := rank ker ∂k

wk := rank im ∂k.

Then, ck = vk + wk ∀k ∈ {0, ..., n}, since im ∂k ∼= Ck(M ;F)/ker ∂k by exactness, and
ck = rank Ck(M ;F) by definition.

Similarly, the short exact sequence

0→ im ∂k+1 → ker ∂k → Hk(M ;F)→ 0

implies that bk = vk−wk+1 ∀k ∈ {0, ..., n}. This is because bk is by definition the rank
of Hk(M ;F), and by exactness, Hk(M ;F) ∼= ker ∂k/im ∂k+1.

We can now substitute the above expressions for ck and bk into the left hand side of (8).

Mt(f)− Pt(M) =
n∑
k=0

ckt
k −

n∑
k=0

bkt
k

=
n∑
k=0

(ck − bk)tk

=
n∑
k=0

(vk + wk − vk + wk+1)t
k

=
n∑
k=0

(wk + wk+1)t
k

=
n∑
k=0

(ck − vk + ck+1 − vk+1)t
k

= t

n∑
k=0

(ck − vk)tk−1 +

n∑
k=1

(ck+1 − vk+1)t
k−1.
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Then since c0 = v0, and relabelling the sum index in the second term, the following
holds.

(t+ 1)
n∑
k=1

(ck − vk)tk−1

which gives the desired result with R(t) =
∑n−1

k=0(ck+1 − vk+1)t
k.

The coefficients rk = ck+1 − vk+1 are non-negative since ker ∂k+1 is a subgroup of
Ck+1(M ;F) which has rank ck+1.

An alternative proof is presented in [3, 6], which uses the cellular structure determined by
the homotopy results of the previous chapter, and applies properties of relative singular
homology to the sublevel sets of M .
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5 Morse Homology

One can determine the homology groups of a manifold M using only knowledge of a
Morse function on the space.

The most common method of determining Morse homology is from theMorse-Smale-Witten
chain complex. This is built from the critical points of a Morse function f , and the
gradient flow between them. First, let us define some terms relating to the gradient flow.

5.1 Gradient Flow

To define a gradient flow, we choose a metric g on M .

Definition 5.1 (Gradient flow). Let f : M → R be a Morse function. For q ∈ M ,
a gradient flow line through q is the maximal curve γ(t) such that γ(t0) = q for some
t0 ∈ R and

γ̇(t) = −∇f(γ(t)).

A flow line γ(t) from p to q satisfies limt→−∞ γ(t) = p, and limt→+∞ γ(t) = q. [14]

In other words, the gradient flow of f describes the flow of a vector field V , where V is
the negative gradient of the function f .

Definition 5.2 (Stable and unstable manifolds). Let ψs be the flow of the vector

field V as defined above. Then ψ0 = id and
dψs
ds

= V . Define

W s(p) = {q ∈M | lim
s→+∞

ψs(q) = p},

W u(p) = {q ∈M | lim
s→−∞

ψs(q) = p}

as the stable and unstable manifolds respectively. [15]

In simple terms, the stable manifold is the set of points that will be sent by the flow to
the point p, and the unstable manifold is the set of points that are sent along the flow
away from the point p.

Theorem 5.3 (Stable-unstable manifold theorem). Let the stable and unstable
manifolds be defined as above, and suppose dim(M) = n. Then for a critical point p
with index λp of a Morse function f : M → R, we have

TpM = T spM ⊕ T upM,
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where T spM, T upM are the tangent spaces of the stable and unstable manifolds of p. In
other words, the tangent space to M at p splits into the subspaces on which the Hessian
is positive and negative definite, which are T spM and T upM respectively.

Also, we have

dim(W s(p)) = m− λp,
dim(W u(p)) = λp,

and both W s(p) and W u(p) are smoothly embedded open disks given by the following
embeddings.

Es : T spM →W s(p) ⊂M
Eu : T upM →W u(p) ⊂M.

Furthermore, the above embeddings are homeomorphisms. [5]

A desirable property of the manifolds described above that is required for Morse homology
to be defined is that they intersect transversally.

Definition 5.4 (Transverse intersection). Subspaces X,Y of a space M intersect
transversally if

Tp(X) + Tp(Y ) = TpM ∀p ∈ X ∩ Y.
where Tp(X) + Tp(Y ) := {u+ v|u ∈ TpX, v ∈ TpY }. We write X t Y . [5]

5.2 Morse Homology Theorem

Definition 5.5 (Morse-Smale function). A Morse function f : M → R is called
Morse-Smale if for any pair of critical points p, q, the stable and unstable manifolds
intersect transversally, i.e. Ws(p) t Wu(q). This is sometimes referred to as the
Morse-Smale transversality condition. [5]

Definition 5.6. Let M be a smooth oriented manifold, and f a Morse-Smale function
on M . Then to each flow γ from p to q we assign either the sign +1 or −1, using the
orientation of M as follows.

For a point x ∈ γ, we have

−(∇(f))(γ(t)) =
d

dt
γ(t).

Given orientations ofW u(q) andW s(p) at x, −(∇(f))(x) may be completed to a positive
basis (−(∇(f))(x), B̃u

x) of TxW u(q). Then for any positive basis (Bs
x) of TxW s(p), we
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have that (B̃u
x , B

s
x) is a basis of TxM . The sign +1 is assigned to γ if the basis gives a

positive orientation for TxM , and the sign −1 otherwise.

Then define the integer n(p, q) :=
∑

γ sign(γ), the sum over all flow lines γ from p to q
of these assigned signs. [16]

The Morse homology is obtained from the following Morse chain complex. This is also
often referred to as the Morse-Smale-Witten or Smale-Witten complex.

Definition 5.7 (Morse-Smale-Witten chain complex). Let f : M → R be a
Morse-Smale function on a smooth orientable manifoldM . Then the Morse-Smale-Witten
chain complex is defined as follows:

• The chain group Ck(f) is the free abelian group generated by the critical points of
f with index k.

• The homomorphism ∂k : Ck(f)→ Ck−1(f) given by

∂k(q) :=
∑

p∈Crk−1(f)

n(p, q)p

is the Morse-Smale-Witten boundary map. [5]

Theorem 5.8 (Morse homology theorem). For a manifold M and Morse function f
satisfying the properties as above, the homology of the Morse-Smale-Witten chain complex
(C∗(f), ∂∗) is isomorphic to the singular homology H∗(M,Z). [5]

Let us see how this works by considering the simple example of the torus T2.

Example 5.9 (The homology of T2). Consider the height function on the Torus as
was mentioned in Chapter 2. As was calculated earlier, we have four critical points
p, q, r, s of indices 0, 1, 1, and 2 respectively.

In general, the height function we have defined on the torus is not Morse-Smale. This is
because there are flow lines beginning at the critical point r of index 1 and ending at the
other critical point q of index 1. The transversality condition implies thatW u(r)∩W s(q)
is a smooth submanifold with

dim(W u(r) ∩W s(q)) = λr + (m− λq)−m = λr − λq
where λr, λq are the indices of r and q respectively, and in this case m = dim(T2) = 2.
However, since W u(r) ∩W s(q) 6= ∅, we must have

dim(W u(r) ∩W s(q)) = λr − λq ≥ 1.
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Therefore, we have a contradiction for the height function on the torus, however, by
tilting the vertical axis of the torus slightly we can fix this problem. Everything else is
then the same, as this rotation has no effect on the nature of the critical points.

The critical points and their indices give us three chain groups

C0 = Z, C1 = Z⊕ Z, C2 = Z.

The Morse-Smale-Witten chain complex is therefore as follows:

0→ Z ∂2−→ Z⊕ Z ∂1−→ Z→ 0

To understand the maps ∂k, we need to consider the flow lines between critical points.
First we orient T2.

We have from the definition, and the fact that the chain groups Ci are generated by the
critical points, that

∂2(s) = (n(s, r)r, n(s, q)q)

∂1(q, r) = n(q, p)p+ n(r, p)p.

However, we have that n(s, q) = n(s, r) = n(q, p) = n(r, p) = 0. For example, consider
n(s, r). This is the sum of the signs of the gradient flow lines from s to r. There are two
such flow lines, in particular the flow around either side of the meridian containing s and
r. Since the Torus is oriented, each of these will have opposite signs and so the sum is
zero.
This is the case for the other pairs of critical points too, and therefore we get that both
∂1 and ∂2 are zero maps. This can be seen in Figure 2.
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Figure 2: Flow lines between critical points on the torus. [5]

Hence, the homology groups are simply given by

H0(T2) ∼= ker(Z→ 0)/im(Z 0−→ Z⊕ Z) = Z/0 = Z

H1(T2) ∼= ker(Z⊕ Z 0−→ Z)/im(Z 0−→ Z⊕ Z) ∼= (Z⊕ Z)/0 = Z⊕ Z

H2(T2) ∼= ker(Z 0−→ Z⊕ Z)/im(0→ Z) = Z/0 = Z.

[5]
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6 Morse-Bott Functions

As has been discussed, many important results come from the study of Morse functions.
However it may not always be easy to find a function on a given Manifold that satisfies
all the conditions to be a Morse function.

By relaxing the condition on isolated critical points, and instead allowing functions with
critical sets comprised of a collection of critical sub-manifolds, we can define a type of
function called a Morse-Bott function. In many cases it can be preferable to work with
Morse-Bott functions over Morse functions, and these can also provide some very useful
information about the topology of the space.

6.1 Definitions

Definition 6.1 (Morse-Bott Function). A function f : M → R is called a Morse-Bott
function if for every critical value y, the set f−1(y) is a nondegenerate critical submanifold
defined as follows.
A nondegenerate critical submanifold C ⊂M is a smooth manifold satisfying the following:

• every point in C is a critical point of the function f ,

• C is a compact, connected manifold,

• TpC = kerHf,p ∀p ∈ C. That is,

Hf,p(X,Y ) = 0 ∀Y ∈ TpC ⇐⇒ X ∈ TpC ∈ TpM.

As presented in [3].

Analogously to the Morse lemma, there is a result that says a Morse-Bott function can
also be written as a quadratic form in some local coordinates. First, we will discuss some
important definitions.

Definition 6.2. Let M be a smooth manifold.

• We define a fibre bundle E over M , where E is a smooth manifold, if there is a
smooth map π : E →M . Then ∀q ∈M , we call Eq ≡ π−1(q) the fibre of E over q.

• A vector bundle is a special case of a fibre bundle. A real vector bundle of rank r
over M is a fibre bundle where every fibre Eq is a real r-dimensional vector space.
The vector spaces Eq vary smoothly with q.

• A tangent bundle TM is the disjoint union of tangent spaces to each point in M .
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• Let S ⊂ M be a smooth submanifold of M . Then the normal bundle N is the
quotient of tangent bundles (TM |S)/TS.

• A disk bundle D(E) is a fiber bundle in which the fibres are disks.

• The Thom space T (E) of a fibre bundle π : E →M is defined as the quotient

T (E) := D(E)/S(E)

where D(E) and S(E) are the disk bundle and sphere bundle of π : E → M
respectively.

[17]

Definition 6.3 (Zero section). Let π : E → X be a vector bundle, and suppose X has
dimension n.

• A map s : X → E given by
s(x) = (x, f(x))

where f : X → Rn is an arbitrary map, is called a section of the vector bundle
π : E → X.

• The zero section is the section X → E sending every point in X to the zero vector
over it in E.

[18]

Definition 6.4 (Tubular neighbourhood). LetM be a smooth manifold, and A ⊂M
a submanifold. Then a Tubular neighbourhood of A is given by a vector bundle π : E → A
and the embedding φ : E → M that extends the diffeomorphism of the zero section Z
onto A induced by π. We have φ(x, 0) = x for (x, 0) ∈ Z. [19]

Theorem 6.5 (Tubular neighbourhood theorem). Let M be a smooth manifold,
and A ⊂ M a compact submanifold of X. Then A has a tubular neighbourhood in M ,
and moreover, any two tubular neighbourhoods φ : E → M,φ′ : E′ → M of A in M are
equivalent.

That is, there exists an isotopy Ht : E → M such that φ = H0 and φ′ = ψH1, with
ψ : E → E′ a diffeomorphism that sends the vector space fibre Ex over x to E′x by a
linear isomorphism for each x ∈ A. [19, 20]

Lemma 6.6 (Morse-Bott Lemma). Let f : M → R be a Morse-Bott function and
suppose S is a connected component of the set of critical points Cr(f) of f . Then for any
point p ∈ S, there exists a local chart around p and a splitting of the normal bundle of S

ν∗(S) = ν+∗ (S)⊕ ν−∗ (S)
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identifying x with (x, v, w), with v ∈ ν+∗ (S), w ∈ ν−∗ (S), such that

f(x) = f(x, u, v) = f(S) + |v|2 − |w|2

within this chart. [5]

It follows from the Morse-Bott lemma that throughout each critical submanifold, the
index remains constant. That is, ∀ critical submanifolds Ci ⊂ Cr(f), if the index is λ
for some point in Ci, then index(p) = λ ∀p ∈ Ci.

Example 6.7 (The torus). As we saw earlier, the height function on a Torus is a
Morse function. If we rotate T2 as shown in Figure 3, then the height function is now a
Morse-Bott function. It has two critical submanifolds, the global maximum and minimum
are both copies of S1.

Figure 3: Critical submanifolds of the height function on a torus.

As with Morse functions, Morse-Bott functions have useful properties relating to the
homotopy type of a given manifold. We will first define some useful terminology before
stating the associated homotopy result.

6.2 Homotopy properties of Morse-Bott functions

Definition 6.8. Let X be a compact CW -complex, x ∈ X, and let F be a field.

• E is called F-orientable if there is some cohomology class σ = Hr(D(E), ∂D(E);F)
such that the restriction of σ to each fiber (D(E)x, ∂D(E)x) is a generator of the
relative cohomology group Hr(D(E)x, ∂D(E)x;F). In this case, σ is called the
Thom class of E associated to some orientation.
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• If E is the normal bundle of a critical submanifold C of a Morse Bott function, then
define E−(C), the subspace of E spanned by the eigenvectors of the Hessian with
negative eigenvalues. Note E = E+⊕E−, where E+ is spanned by the eigenvectors
with positive eigenvalues.

• AMorse-Bott function f : M → R is F-orientable if the bundleE−(Ci) is F-orientable
for each critical submanifold Ci.

[3]

For example, any Morse-Bott function f : M → R is Z/2-orientable since all vector
bundles are Z/2-orientable.

Theorem 6.9. For a Morse-Bott function f : M → R, suppose c is a critical value such
that Crf ∩ f−1(c) is a collection of finitely many critical submanifolds C1, ..., Ck. Let
D−(Ci) be the closed unit disk bundle of E−(Ci). Then for some ε > 0, M c+ε := {f ≤
c+ ε} is homotopy equivalent to the space M c−ε with disk bundles D−(Ci) attached along
their boundaries ∂D−(Ci). Therefore, the following is an isomorphism ∀ F. [3]

H∗(M
c+ε,M c−ε;F) ∼=

k⊕
i=1

H∗(D
−(Ci), ∂D

−(Ci);F). (10)

The above theorem gives an analogous result for a Morse-Bott function to the relationship
between critical points of a Morse function and the CW structure of the manifold M . In
the Morse-Bott case, the result is that M has the homotopy type of a collection of disk
bundles. [21]

In other words, we have

M ∼ D−λ1(C1) ∪
f1
D−λ2(C2) ∪

f2
...D−λk−1

(Ck−1) ∪
fk
D−λk(Ck)

where Ci are the critical submanifolds of f , and fi map the boundary of each new disk
bundle into the existing complex.

Example 6.10 (Structure of T2 from a Morse-Bott function). The height function
on the torus gave us two critical submanifolds, both copies of S1. The above theorem
says that each of these contributes a cell bundle. These are D0(S1) and D1(S1), since
the submanifolds have indices 0 and 1. Therefore we have

T2 ∼ D−0 (S1) ∪
f
D−1 (S1).

Then f maps the boundary ∂D−1 (S1) into D−0 (S1). By definition, the fibres of D−0 (S1)
are 0-dimensional. Therefore D−0 (S1) ∼= S1. The boundary of D−1 (S1) is an annulus as

37



shown below. The boundary of this annulus is two copies of S1, and so the attaching
map f maps these to the minimal subcomplex S1.

We give the maximal subcomplex the CW -structure of two 0-cells and two 1-cells. Using
the disk bundle over this circle, attach two 1-cells via the two 0-cells, and then attach
two 2-cells again using the disk bundle. This gives the annulus, as shown in Figure 4a.
When attached to the lower circle, the opposite 1-cells and 0-cells of the boundary of the
annulus are identified, giving the cell structure shown in Figure 4b.

Therefore we have

D−0 (S1) ∪
f
D−1 (S1) ∼= e0 ∪ e0 ∪ e1 ∪ e1 ∪ e1 ∪ e1 ∪ e2 ∪ e2.

(a) The upper and lower disk bundles. (b) The resulting cell structure.

Figure 4

6.3 Morse-Bott inequalities

There are analogous inequalities to the Morse equalities for Morse-Bott functions. We
will state and prove these using polynomials as for the Morse inequalities, however the
method is slightly different. We follow the construction and proof in [3].
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Definition 6.11 (Relative Poincaré polynomial). The relative Poincaré polynomial
for X,Y compact spaces, is defined as

PX,Y (t) :=
∑
k

bk(X,Y )tk =
∑
k

dim Hk(X,Y )tk.

Here the Betti numbers come from the relative homology of X with Y .

Lemma 6.12. If a compact space X has a filtration X1 ⊂ X2 ⊂ ... ⊂ Xn = X with Xi

closed ∀i ∈ {1, ...., n}, then
n∑
i=1

PXi,Xi−1(t) = PX,F(t) +R(t) (11)

where R(t) is a polynomial with non-negative coefficients.

Theorem 6.13 (Thom Isomorphism Theorem). For an F-orientable vector bundle
π : E → X of rank r over X, we have

Hk+r(D(E), ∂D(E)) ∼= Hk(X)

over F.

Proof: for X compact. The Thom Isomorphism theorem may be proved by induction.
First, suppose that π : E → X is the trivial vector bundle E = X × Rn. Therefore, we
have

T (E) = X ×Dn/X × Sn−1.
The projection p : X 7→ pt gives the following map

τ : T (E) = X ×Dn/X × Sn−1 → Dn/Sn−1 ∼= Sn−1.

Then suppose a ∈ Hn(T (E)) is the image of a generator in cohomology from the map

Hn(Sn) ∼= Z τ∗−→ Hn(T (E)).

Taking the cup product with the class [a] gives

Hk(X)
∪−→ Hn+k(T (E)) = Hn+k(X ×Dn, X × Sn−1) = Hn+k(X × Sn, X × pt)

by excision. This map is an isomorphism, by the universal coefficient theorem.

Now suppose that X = X1 ∪X2 with X1, X2 open, and we know the theorem holds for
E1 and E2, the restrictions of the vector bundle π : E → X to the spaces X1 and X2
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respectively. Then the theorem also holds for E1,2, the restriction to X1 ∩X2. We can
apply Mayer Vietoris for cohomology. We have the sequence

...→ Hk−1(T (E1,2))→ Hk(T (E))→ Hk(T (E1))⊕Hk(T (E2))→ Hk(T (E1,2))→ ...

All the terms involvingE1, E2 are zero for k < n, and therefore by exactness,Hk(T (E)) = 0.

For k = n, we have

Hn(T (E1)) ∼= Hn(T (E2)) ∼= Hn(T (E1,2)) ∼= Z.

We also have Hn−1(T (E1,2)) = 0, so by exactness, Hn(T (E)) ∼= Z. There is a class
[a] ∈ Hn(T (E)) mapping to the direct sum of Thom classes in Hn(T (E1))⊕Hn(T (E2)).

In addition, there is the Mayer Vietoris sequence

...→ Hk−1(X1 ∩X2)→ Hk(X)→ Hk(X1)⊕Hk(X2)→ Hk(X1 ∩X2)→ ...

which maps to the corresponding sequence relating to the Thom spaces by taking the cup
product with the Thom classes. We consider the case for k ≥ n. We know by assumption
that the map between the two sequences is an isomorphism for terms involving X1 and
X2. Therefore by the Five Lemma, it is also an isomorphism on H∗(X). Finally, if X is
a finite union of open sets Xi, the theorem may be proved by induction using that the
restrictions to each Xi are trivial as before. [17]

Definition 6.14 (Morse-Bott polynomial). As for Morse functions, there is an associated
Morse-Bott polynomial

Bf (t) :=
∑
Ci

tλCiPCi,F(t) (12)

where PCi,F(t) is the Poincaré polynomial for the critical submanifold Ci and λCi the
index of the critical submanifold Ci. [3]

In fact, the Morse-Bott polynomial reduces to the Morse polynomial in the case of a
Morse function.

The Morse-Bott inequalities can be formulated as follows in terms of the Morse-Bott and
Poincaré polynomials similarly to the polynomial Morse inequalities used in the proof of
the Morse inequalities.

Theorem 6.15 (Morse-Bott Inequalities). Let f : M → R be an F-orientable
Morse-Bott function on a compact manifold M . Then

Bf (t) = PM,F(t) + (1 + t)R(t)

where R(t) is a polynomial in t with non-negative coefficients. [3]
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Proof. First, we define a series of midpoints tk :=
ck+ck+1

2 where ci are the critical values
of f and k ∈ {1, ..., s− 1}, and set t0 := c0 − 1, ts := cs + 1.

Then by applying (10) to Lemma 6.12, we get that∑
Ci

PD−(Ci),∂D−(Ci) =
∑
k

PMk,Mk−1
= PM,F(t) + (1 + t)R(t).

with R(t) a polynomial with non-negative coefficients. Here, Mk is the set {f ≤ tk}, and
on the right is a sum over all critical submanifolds of f . This is because the Poincaré
polynomial PMk,Mk−1

has its coefficients which are Betti numbers, derived from the
homology groups. Then (10) gives an isomorphism on homology to the homology of
the corresponding disk bundles.

The Thom isomorphism theorem implies that

PD(E),∂D(E)(t) = trPX(t)

where r is the rank of a real vector bundle π : E → X over a compact CW -complex X.
This tells us that

PD−(Ci),∂D−(Ci) = tλCiPCi(t).

In particular, the Morse-Bott polynomial is the sum of the Poincaré polynomials PD−(Ci),∂D−(Ci)(t),
so

Bf (t) =
∑
Ci

PD−(Ci),∂D−(Ci)(t) = PM,F(t) + (1 + t)R(t)

for some R(t) with non-negative coefficients. [3]
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7 Lens Spaces

7.1 Definition

Definition 7.1 (Lens Space). Let S3 = {z1, z2 ∈ C : z21 + z22 = 1} be the 3-sphere, and
p, q be two coprime integers. The action of Z/p on S3 is generated by the homeomorphism

(z1, z2) 7→ (e2iπ/p · z1, e2iπq/p · z2)

Then a 3-dimensional Lens Space L3(p; q) is the quotient space of S3 by the action of
Z/p.

In general, for S2n−1 = {(z1, z2, ..., zn) ∈ Cn :
∑n

i=1 z
2
i = 1} , the action of Z/p on S2n−1

is generated by the homeomorphism

(z1, ..., zn) 7→ (e2iπq1/p · z1, e2iπq2/p · z2, ...., e2iπqn/p · zn)

for q1, q2, ..., qn, p coprime. Then the (2n-1)-dimensional Lens Space Ln(p; q1, ..., qn−2) is
the quotient space of S2n−1 by the action of Z/p. [22]

Note that this definition gives only odd-dimensional Lens spaces.

In the 3-dimensional case, there is an alternative definition in terms of the torus. The
space L(p; q) is equivalent to two solid tori T1 and T2 glued together via a homeomorphism
sending the meridian of T1 to a curve on ∂T2 that runs p times along a longitude and q
times along a meridian.

The condition that gcd(p, q1, ..., qn) = 1 means that the given action of Z/p on S2n−1 is
a free action and therefore the resulting quotient space is indeed a manifold.

Lens Spaces are of particular interest because they exhibit some interesting properties.
For example in 3 dimensions, the spaces L3(7; 1) and L3(7; 2) are homotopy equivalent
but not homeomorphic.

7.2 A Morse-Bott Function on a Lens Space

There is a natural Morse-Bott function on a Lens space, coming from a simple function on
S2n−1 with the relevant identifications. The function on CPn that was discussed earlier
and also in Milnor’s Morse theory [6] can also be applied to the Lens space. On CPn,
the function is a Morse function and has n critical points. However, the same function
applied to the Lens space is in fact not a Morse function, but a Morse-Bott function.
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For the coordinates in the above definition of a Lens space, the function

f(z1, z2, ..., zn) =

n∑
j=1

cj |zj |2

with ci ∈ R, is a Morse-Bott function on the n-dimensional Lens space.

In particular, let us consider a 3-dimensional Lens space L3(p, q). Then we have the
function

f(z1, z2) = c1|z1|2 + c2|z2|2.
Similarly to the case for CPn, we have a local representation

f = c1 + (c2 − c1)(x22 + y22).

Let us try to find the critical submanifolds for this function. In the local coordinates
(z1, z2), f can be written in terms of z2 only by the implicit function theorem as long as
z1 6= 0.

Write |z1| z2z1 = x2 + iy2, then |z1|2 = 1− (x22 + y22), and f can be rewritten as

f = c1 + (c2 − c1)(x22 + y22).

Hence

df = (2x2(c2 − c1), 2y2(c2 − c1)) = 0 ⇐⇒ x2 = y2 = 0 i.e. z2 = 0.

So for a critical point, we have z2 = 0, and since the Lens space is a quotient space of the
sphere S3, we have |z1|2 + |z2|2 = 1. Therefore we must have |z1|2 = 1 and one critical
submanifold is the set of points

C1 := {(z1, 0) : |z1|2 = 1} ∼= S1.

Similarly, taking z2 6= 0, we get a second critical submanifold

C2 := {(0, z2) : |z2|2 = 1} ∼= S1.

To see what the indices for these critical manifolds are, we check the Hessian matrices:

Hp∈C1 =

[
2(c2 − c1) 0

0 2(c2 − c1)

]
, Hp∈C2 =

[
2(c1 − c2) 0

0 2(c1 − c2)

]
.

Either 2(c2 − c1) or 2(c2 − c2) will be negative, meaning one of C1, C2 will have index 0
and the other index 2.

We can check that this function is indeed a Morse-Bott function by checking the necessary
conditions.
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• Each connected component of the set of critical points Cr(f) is compact :
This is true since each connected component is a copy of S1,

• TpS1 = ker Hf,p ∀p ∈ S1 for each copy of S1 ∈ Cr(f):
This can be shown by the Hessian matrix directly:

Hf,p =

[
2(c2 − c1) 0

0 2(c2 − c1)

]
The Hessian is clearly nondegenerate.
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8 Morse-Bott Homology

There is more than one method to achieve Morse-Bott homology, often with some more
difficulty than in the Morse case. For example, in [23], Hurtubise compares three different
methods of computing homology from a Morse-Bott function. Other methods involve
constructing other chain complexes. One can find local Morse functions defined on the
critical submanifolds of the Morse-Bott function and use these to define a chain complex.
Alternatively, there is a method that uses the spectral sequence that comes from the
filtration of the manifold M as a result of the Morse-Bott function. [16]

8.1 Perturbing Morse-Bott to Morse

One method is to simply perturb the Morse-Bott function to a Morse function, and then
calculate the homology as described earlier for a Morse function using the Morse-Smale-Witten
chain complex. [24]

Theorem 8.1. Let M be a finite dimensional manifold, and g : M → R a smooth
function. Then ∀ε > 0, there is a Morse function f : M → R such that for x ∈M ,

sup{|g(x)− f(x)|} < ε.

That is, this perturbation method is always possible in the finite dimensional case. [25]

It is possible to perturb a Morse-Bott function f to a Morse function by choosing Morse
functions gi defined on the critical submanifolds Ci of f . Then, each function gi is
extended to a tubular neighbourhood Ti of Ci such that gi is constant in directions
normal to Ci. One then defines a local function µi that has constant value 1 in some
larger tubular neighbourhood T̂i of Ci, and is zero outside Ti. The function µi is constant
in the direction parallel to Ci, and decreases smoothly from 1 to 0 on the space T̂i \ Ti.
This type of function is sometimes called a bump function.

Then, for some small ε > 0, one has a function

g := f + ε
∑
i

µigi.

The function g is a smooth function, it coincides with f outside a neighbourhood of the
critical submanifolds, and near the critical submanifolds it is a Morse function. Therefore
g is a Morse function on M , and in fact also a Morse-Smale function.

Notice that we then have
Cr(g) =

⋃
i

Cr(gi).
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Lemma 8.2. Suppose the critical submanifold Ci of the Morse-Bott function f has index
λCi , and also that p ∈ Ci is a critical point of gi with index λip. Then p is also a critical
point of g, and

index(p) =: λgp = λCi + λip.

[25]

It is now possible to determine the Morse homology ofM from the Morse-Smale function
g : M → R.

Example 8.3 (The torus). Consider again the height function on T2 as a Morse-Bott
function with two critical submanifolds, a maximum and minimum circle. Then we may
define a Morse function on each of the submanifolds and extend this to one function on
T2 such that away from the two critical circles, we still have the original Morse-Bott
function.

This has the effect of tilting both copies of S1 and applying to them a height function,
giving a maximum and minimum point for each. Then, we have a Morse function on T2

with four critical points, and the Morse homology may be determined in the usual way.

8.2 A filtration from the Morse-Bott function

CW Homology can be very useful for relatively easily determining the Homology of a
space with a known filtration as a CW complex. Instead of using the n-cells of a manifold
M , it may be possible to use the filtration of the manifoldM and its critical submanifolds
coming from a Morse-Bott function in order to find the homology.

The 3-dimensional Lens space is again an interesting example to demonstrate this. There
is the possibility of then generalising to higher dimensional Lens spaces.

Example 8.4 (3-dimensional Lens space). Let L := L(p, q) be a Lens space. Then, as
determined in the previous chapter, the critical submanifolds of the Morse-Bott function
f on L are two copies of S1, one of index 0 and one of index 2.

Consider the filtration ∅ ⊂ S1 ⊂ L where we S1 is the maximal critical submanifold of
dimension 2. Then from the short exact sequence of the pair, we get the induced long
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exact sequence on homology:

0→ H3(L)→ H3(L, S
1)→ H2(S

1)→ H2(L)→ H2(L, S
1)→ H1(S

1)→
→ H1(L)→ H1(L, S

1)→ H0(S
1)→ H0(L)→ 0

We know the homology of S1:

Hn(S1) =

{
Z n = 0, 1

0 otherwise

We can also simplify further by using the Thom Isomorphism theorem and Theorem 6.9.
The negative normal bundle of the maximal critical submanifold S1 in L(p; q) has rank
2 over S1. That is, the subspace of the normal bundle of C2 on which the Hessian is
negative definite is 2 by definition of the index. This implies that

Hn(L, S1) ∼= Hn−2(S
1).

So we now have:

0→ H3(L)→ H3(L, S
1) ∼= H1(S

1) ∼= Z→ H2(S
1) = 0 (13)

0→ H2(L)→ H2(L, S
1) ∼= H0(S

1) ∼= Z δ−→ H1(S
1) ∼= Z→ H1(L)→ H1(L, S

1) ∼= 0
(14)

0→ H0(S
1) = Z→ H0(L)→ 0 (15)

Hence, by exactness in (13) we see that H3(L) ∼= Z, and similarly, in (15) we get that
H0(L) ∼= Z.

The map δ : H2(L, S
1) → H1(S

1) in (14) is multiplication by p. This is because the
boundary of the disc generating H2(L, S

1) wraps around the copy of S1 p times when
mapped into H1(S

1), due to the identifications of the Lens space. Thus, we get by
exactness that H1(L) ∼= Z/p and H2(L) = 0.

Therefore, we have determined all the homology groups of the 3-dimensional Lens space:

Hk(L(p; q),Z) ∼=


Z k = 0, 3

Z/p k = 1

0 otherwise.

It is not too difficult to generalise the above example to the n-dimensional case. A little
more consideration is required to determine the associated boundary maps.
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Example 8.5 (m-dimensional Lens space). Let Lm be the m-dimensional Lens
space L(p; q1, q2, ...qn), where m = 2n − 1. Then by the same method as used for the
3-dimensional Lens space, Lm has critical submanifolds given by

Ck = {(0, ..., 0, zk, 0, ..., 0) : |zk|2 = 1} ∼= S1, ∀k ∈ {1, ..., n},

with even indices 0, 2, ..., 2n− 2, or equivalently 0, 2, ...,m− 1.

index = 0

index = 2

index = 2n− 4 = m− 3

index = 2n− 2 = m− 1

Figure 5: Ordering of the critical submanifolds.

Then we have a filtration

∅ ⊂ S1 ⊂ L3 ⊂ L5 ⊂ ... ⊂ Lm.

We have the following long exact sequence in homology.

0→ Hm(Lm)→ Hm(Lm, Lm−2)→ Hm−1(L
m−2)→ Hm−1(L

m)→ . . . → H2(L
m)

→ H2(L
m, Lm−2)→ H1(L

m−2)→ H1(L
m)→ H1(L

m, Lm−2)→ H0(L
m−2)→ H0(L

m)→ 0.

We can see that the homotopy type of Lm−2 is the same as that of Lmm−3, the sublevel
set of points up to and including the index m − 3 submanifold in Lm. Since we do not
pass any critical values, this has the same homotopy type of Lmm−2.

Therefore we have that
Hk(L

m
m−2)

∼= Hk(L
m−2).

The manifold Lm has an extra critical submanifold, a copy of S1 with index m− 1 that
Lm−2 does not. This can be explained by the fact that Lm−2 ∼= Lmm−2. Therefore Lm

and Lmm−2 can replace M c+ε and M c−ε in the isomorphism (10) in theorem 6.9. The
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rank of the negative normal bundle E− of the maximum critical submanifold S1 over S1

is m− 1, since the maximal critical submanifold has index m− 1 and hence the maximal
subspace of the normal bundle E−(S1) on which the Hessian has negative eigenvalues
has rank m− 1. That is, the rank of E−.

Therefore, by theorem 6.9 and the Thom isomorphism theorem, we have

Hk(D
−(E), ∂D−(E)) ∼= Hk(L

m, Lm−2)

∼= Hk−(m−1)(S
1).

Substituting the known homology of S1 into the long exact sequence above, we obtain
the following exact sequences.

0→ Hm(Lm)→ Hm(Lm, Lm−2) ∼= H1(S
1) ∼= Z→ Hm−1(L

m−2) = 0 (16)

0→ Hm−1(L
m)→ Hm−1(L

m, Lm−2) ∼= H0(S
1) ∼= Z→ Hm−2(L

m−2) ∼= Z→ (17)

→ Hm−2(L
m)→ Hm−2(L

m, Lm−2) = 0...

...0→ Hk(L
m−2)→ Hk(L

m)→ Hk(L
m, Lm−2) = 0... (18)

...0→ H0(L
m−2) ∼= Z→ H0(L

m)→ 0

In particular, for all k < m− 2, we have by exactness in (18) that

Hk(L
m) ∼= Hk(L

m−2).

Therefore by induction, we have so far that

Hk(L
m) =


Z k = 0

Z/p k odd, k < m− 2

0 k even, k < m− 2

Similarly, by exactness in (16), we get that Hm(Lm) ∼= Z.

It remains to consider in (17) the map

δ : Hm−1(L
m, Lm−2) ∼= Z→ Hm−2(L

m−2) ∼= Z.

We have the relationship

Hm−1(L
m, Lm−2) ∼= Hm−1(D

m, Sm−2) ∼= Hm−2(S
m−2)

by excision and the following long exact sequence of the pair.

0 = Hm−1(S
m−2)→ Hm−1(D

m, Sm−2)→ Hm−2(S
m−2) ∼= Z→ Hm−1(D

m) = 0.
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Thus, we have a map

δ′ : Hm−2(S
m−2)→ Hn=m−2(L

m−2),

with δ ' δ′. The map δ′ is induced by some homeomorphism f between two manifolds
of the same dimension, Sm−2 and Lm−2. Notice that Sm−2 is the universal cover for any
(m− 2)-dimensional Lens space Lm−2.

The quotient map by the action of Z/pmaps Sm−2 smoothly to Lm−2. By the identifications

(z1, ..., zn) ∼ (e2iπq1/p · z1, e2iπq2/p · z2, ...., e2iπqn/p · zn),

we can see that the preimage of a point y in Lm−2 under a smooth map from Sm−2 is a
set of p points (x1, ..., xp). The local degree at each xi is ±1. By choosing an orientation,
we can take this to be 1, and therefore we have that the degree of the map is p.

Thus, we have that δ is multiplication by p, giving us the following sequence,

0→ Hm−1(L
m)→ Z ·p−→ Z→ Hm−2(L

m)→ 0.

By exactness, this gives Hm−1(L
m) = 0 and Hm−2(L

m) ∼= Z/p.

Therefore, we have obtained the homology groups for any Lens space Lm(p, q1, ..., qn).

Hk(L
m) =


Z k=0,m
Z/p k < m and odd

0 otherwise
⇐⇒ Hk(L

2n−1) =


Z k=0, 2n− 1

Z/p k < 2n− 1 and odd

0 otherwise.
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9 Flow Categories for Morse-Bott functions

The method of using flow categories for Morse functions to calculate Morse homology is
well established. It is interesting to consider whether a similar approach could be applied
to Morse-Bott functions. In this case, the notion of a flow category needs to be re-defined
in order to make sense for the Morse-Bott situation.

9.1 The Flow Category

First, we will introduce some basic category theory and define the standard flow category.

Definition 9.1 (Category). A Category, C, is a collection of Objects and Morphisms
between the objects, such that the following are satisfied:

• for A,B,C ∈ ob(C), f : A → B, g : B → C, there exists a composition map
g ◦ f : A→ C,

• for A,B,C,D ∈ ob(C), f : A→ B, g : B → C, h : C → D, we have
h ◦ (g ◦ f) = (h ◦ g) ◦ f ,
• ∃ an identity 1A : A→ A ∈ mor(C) ∀A ∈ ob(C).

That is, each object has an identity morphism, and all morphisms in the category satisfy
the associativity law. For a function f : A → B, it is sometimes written f ∈ C(A,B).
We also write dom(f) and cod(f) to mean the domain and codomain of f respectively.
The objects of a category can equivalently be thought of as sets, and the morphisms as
functions. [26]

Definition 9.2 (Topological Category). A topological category is a category where
the sets Mor and Ob are topological spaces, and the identity, composition, domain and
codomain maps are all continuous. [14]

The Flow category is another example of a category, which is important in Morse theory.

Definition 9.3 (Flow Category). Let f : M → R be a Morse function on a manifold
M . Then a category Cf with

ob(Cf ) = {critical points of f},
mor(Cf )(A,B) = {piecewise gradient trajectories from A to B}

for A,B ∈ ob(Cf ) is called the flow category associated to f . Composition of morphisms
is concatenation of the trajectories. [14]
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The set ob(Cf ) is in fact a topological space, as a subspace of M . It has the discrete
topology since all the critical points of a Morse function are isolated and hence so are
the neighbourhoods. It can further be shown that the flow category is also a topological
category. [14]

9.2 A Flow Category defined for Morse-Bott Functions

In a paper [7] by Cohen et al, they define a flow category for a Morse-Bott function in a
way that there is a strong connection to the homology of the manifoldM . In this section,
this method will be applied to the example of a Lens space.

The flow category for a Morse function has the critical points as the objects, and the
gradient flow between these points as the morphisms.

For a Morse-Bott function f , suppose the objects are the critical submanifolds for a given
critical value, and the morphisms the piecewise gradient flows between any pair of these.
That is, a flow line γ from p to q may stop at other critical points between p and q. We
have γ as the concatenation of p curves,

γ := γr ◦ γr−1 ◦ ... ◦ γ0,

where

lim
t→−∞

γ0(t) = q, lim
t→∞

γp(t) = p

lim
t→−∞

γi(t) = pi, lim
t→∞

γi(t) = pi+1

for pi critical points with p0 = q and pr+1 = p. i.e. each γi is a flow line from pi to pi+1.

When the Smale-transversality condition is satisfied by the gradient flow, which in simple
cases it is, we may define the flow category as follows. If ti are the critical values associated
to the critical submanifolds Ci, and assume that t0 > t1 > ... > tn. Then define the
object set of the flow category Cf as the collection of critical submanifolds

Ob(Cf ) :=
∐

Ci.

Then, the spaces of Morphisms Cij from Ci to Cj are compact manifolds with corners,
and the category Cf is a topological category.

9.3 Flow Category on a Lens Space

Example 9.4. As we found earlier, we have two critical submanifolds for the function

f(z1, z2) = c1|z1|2 + c2|z2|2
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on the 3-dimensional Lens space.

To find the gradient flow between these to critical manifolds, we can make a ‘slice’ in
between the two critical levels by taking a preimage of a value somewhere within this
region. Away from the critical submanifolds, we have that z0, z1 6= 0, so we may express
f in terms of either z0 or z1.

Without loss of generality, suppose we can write

f = c1 + (c2 − c1)(x22 + y22)

Then, for example, calculate

f−1
(

1

2

)
=

{
(x1 + iy1, x2 + iy2) ∈ L3(p, q) : c1 + (c2 − c1)(x22 + y22) =

1

2

}
=

{
(z1, z2) ∈ L3(p, q) : |z2|2 =

1

c2 − c1

(
1

2
− c1

)}
.

This gives us {(z1, z2) : |z2|2 = c} for some constant c, and since we have |z1|2+ |z2|2 = 1,
we also have that |z1|2 = 1− c and so the resulting space is S1 × S1, i.e. the Torus T2.

The formulation of Morse-Bott flow categories comes from [7], and the example follows
closely to the CPn example from [6].

Lens spaces can exhibit unusual properties in that there are some pairs of Lens spaces
with the same homology groups and homotopy groups, that are not homotopy equivalent.
Others are homotopy equivalent, however not homeomorphic.

It may be possible to use the knowledge of the flow between the two critical submanifolds
on the Lens Space and an attaching map from this torus of flow lines to the whole space
to find the homeomorphism type.

It may also be possible to further study the Lens spaces by considering the moduli spaces
of the flow between the critical submanifolds, again this may require careful consideration
of the properties of the Lens space and the Morse-Bott function.

If this could be achieved, the results would form a completion of this example. Perhaps
for specific cases, it could allow the unusual behaviour of the Lens space regarding the
homeomorphism and homotopy types, to be realised through the study of a very simple
function.
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10 Conclusion

Morse theory has been an invaluable tool in providing fundamental results regarding the
structure and topology of a variety of manifolds. It can be extended further to give
results for non-compact manifolds, complex spaces, infinite dimensional manifolds [6],
and also many areas of pure and applied mathematics.

In general, Morse-Bott functions may have less concrete results, however it has been
shown that in some cases one can obtain elegant solutions to problems with the use
of a Morse-Bott function. In particular, there are cases where a simple Morse-Bott
function on a manifold may arise more naturally than a Morse function. With a simple
Morse-Bott function, it can often be possible to determine all the same information about
the manifold. In other cases, there is always the possibility to perturb this to a Morse
function instead.

While there are many approaches to determining homology, whether it is singular,
simplicial or cellular, Morse and Morse-Bott homology are effective alternatives when one
has knowledge of a function on a manifold rather than of the structure of the manifold
itself.

Since the early stages of Morse theory, using the fundamental properties of critical points
to build up the structure of topological spaces, the subject has enabled a huge number
of other concepts to be explored. The subject is continuing to grow, and will no doubt
lead to many more results in its application.
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